Current time in Korea 18:01 Oct 19 (Thu) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 24, Number 6
BKCSDE 24(6)
June 20, 2003 

Steering the Dynamics within Reduced Space through Quantum Learning Control
Young Sik Kim
Quantum learning control, Optimal control experiment, Quantum dynamics
In quantum dynamics of many-body systems, to identify the Hamiltonian becomes more difficult very rapidly as the number of degrees of freedom increases. In order to simplify the dynamics and to deduce dynamically relevant Hamiltonian information, it is desirable to control the dynamics to lie within a reduced space. With a judicious choice for the cost functional, the closed loop optimal control experiments can be manipulated efficiently to steer the dynamics to lie within a subspace of the system eigenstates without requiring any prior detailed knowledge about the system Hamiltonian. The procedure is simulated for optimally controlled population transfer experiments in the system of two degrees of freedom. To show the feasibility of steering the dynamics to lie in a specified subspace, the learning algorithms guiding the dynamics are presented along with frequency filtering. The results demonstrate that the optimal control fields derive the system to the desired target state through the desired subspace.
744 - 750
Full Text