Current time in Korea 00:02 Oct 24 (Tue) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 28, Number 3
BKCSDE 28(3)
March 20, 2007 

 
Title
MP2 Basis Set Limit Binding Energy Estimates of Hydrogen-bonded Complexes from Extrapolation-oriented Basis Sets
Author
Young Choon Park, Jae Shin Lee*
Keywords
Hydrogen bonding, MP2 basis set limit, Extrapolation
Abstract
By use of a simple two-point extrapolation scheme estimating the correlation energies of the molecules along with the basis sets specifically targeted for extrapolation, we have shown that the MP2 basis set limit binding energies of large hydrogen-bonded complexes can be accurately predicted with relatively small amount of computational cost. The basis sets employed for computation and extrapolation consist of the smallest correlation consistent basis set cc-pVDZ and another basis set made of the cc-pVDZ set plus highest angular momentum polarization functions from the cc-pVTZ set, both of which were then augmented by diffuse functions centered on the heavy atoms except hydrogen in the complex. The correlation energy extrapolation formula takes the (X+1)-3 form with X corresponding to 2.0 for the cc-pVDZ set and 2.3 for the other basis set. The estimated MP2 basis set limit binding energies for water hexamer, hydrogen fluoride pentamer, alaninewater, phenol-water, and guanine-cytosine base pair complexes of nucleic acid by this method are 45.2(45.9), 36.1(37.5), 10.9(10.7), 7.1(6.9), and 27.6(27.7) kcal/mol, respectively, with the values in parentheses representing the reference basis set limit values. A comparison with the DFT results by B3LYP method clearly manifests the effectiveness and accuracy of this method in the study of large hydrogen-bonded complexes.
Page
386 - 390
Full Text
PDF