Current time in Korea 02:46 Oct 21 (Sat) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 28, Number 10
BKCSDE 28(10)
October 20, 2007 

 
Title
Efficiency of Rotational Operators for Geometric Manipulation of Chain Molecules
Author
Chaok Seok*, Evangelos A. Coutsias*
Keywords
Rotation operator, Rotation matrix, Quaternion, Internal coordinates
Abstract
Geometric manipulation of molecules is an essential elementary component in computational modeling programs for molecular structure, stability, dynamics, and design. The computational complexity of transformation of internal coordinates to Cartesian coordinates was discussed before.1 The use of rotation matrices was found to be slightly more efficient than that of quaternion although quaternion operators have been widely advertised for rotational operations, especially in molecular dynamics simulations of liquids where the orientation is a dynamical variable.2 The discussion on computational efficiency is extended here to a more general case in which bond angles and sidechain torsion angles are allowed to vary. The algorithm of Thompson3 is derived again in terms of quaternions as well as rotation matrices, and an algorithm with optimal efficiency is described. The algorithm based on rotation matrices is again found to be slightly more efficient than that based on quaternions.
Page
1705 - 1708
Full Text
PDF