Current time in Korea 06:53 Oct 17 (Tue) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 31, Number 5
BKCSDE 31(5)
May 20, 2010 

Computational Prediction of Solvation Free Energies of Amino Acids with Genetic Algorithm
Jung Hum Park, Jin Won Lee*, Hwangseo Park*
Solvation, Amino acids, Genetic algorithm, Atomic parameters, Envelope function
We propose an improved solvent contact model to estimate the solvation free energies of amino acids from individual atomic contributions. The modification of the solvation model involves the optimization of three kinds of parameters in the solvation free energy function: atomic fragmental volume, maximum atomic occupancy, and atomic solvation parameters. All of these atomic parameters for 17 atom types are developed by the operation of a standard genetic algorithm in such a way to minimize the difference between experimental and calculated solvation free energies. The present solvation model is able to predict the experimental solvation free energies of amino acids with the squared correlation coefficients of 0.94 and 0.93 for the parameterization with Gaussian and screened Coulomb potential as the envelope functions, respectively. This result indicates that the improved solvent contact model with the newly developed atomic parameters would be a useful tool for the estimation of the molecular solvation free energy of a protein in aqueous solution.
1247 - 1251
Full Text