Current time in Korea 06:51 Oct 20 (Fri) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 32, Number 3
BKCSDE 32(3)
March 20, 2011 

 
Title
Development of Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop for the Sensitive Determination of Trace Copper in Water and Beverage Samples by Flame Atomic Absorption Spectrometry
Author
Chunxia Wu, Bin Zhao, Yingli Li, Qiuhua Wu, Chun Wang, Zhi Wang *
Keywords
Dispersive liquid-liquid microextraction based on solidification of floating organic droplet, Flame atomic absorption spectrometry, Copper, Water, Beverage
Abstract
A dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) has been developed as a new approach for the extraction of trace copper in water and beverage samples followed by the determination with flame atomic absorption spectrometry. In the DLLME-SFO, 8-hydroxy quinoline, 1-dodecanol, and methanol were used as chelating agent, extraction solvent and dispersive solvent, respectively. The experimental parameters related to the DLLME-SFO such as the type and volume of the extraction and dispersive solvent, extraction time, sample volume, the concentration of chelating agent and salt addition were investigated and optimized. Under the optimum conditions, the enrichment factor for copper was 122. The method was linear in the range from 0.5 to 300 ng mL−1 of copper in the samples with a correlation coefficient (r) of 0.9996 and a limit of detection of 0.1 ng mL−1. The method was applied to the determination of copper in water and beverage samples. The recoveries for the spiked water and beverage samples at the copper concentration levels of 5.0 and 10.0 ng mL−1 were in the range between 92.0% and 108.0%. The relative standard deviations (RSD) varied from 3.0% to 5.6%.
Page
829 - 835
Full Text
PDF