Current time in Korea 14:46 Oct 18 (Wed) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 32, Number 3
BKCSDE 32(3)
March 20, 2011 

The Root Cause of the Rate Performance Improvement After Metal Doping: A Case Study of LiFePO4
ChangKyoo Park, SungBin Park, JiHun Park, HoChul Shin, WonIl. Cho, Ho Jang*
LiFePO4, Doping, Rate performance, XPS, Binding energy
This study investigates a root cause of the improved rate performance of LiFePO4 after metal doping to Fesites. This is because the metal doped LiFePO4/C maintains its initial capacity at higher C-rates than undoped one. Using LiFePO4/C and doped LiFe0.97M0.03PO4/C (M=Al3+, Cr3+, Zr4+), which are synthesized by a mechanochemical process followed by one-step heat treatment, the Li content before and after chemical delithiation in the LiFePO4/C and the binding energy are compared using atomic absorption spectroscopy (AAS) and X-ray photoelectron spectroscopy (XPS). The results from AAS and XPS indicate that the low Li content of the metal doped LiFePO4/C after chemical delithiation is attributed to the low binding energy induced by weak Li-O interactions. The improved capacity retention of the doped LiFePO4/C at high discharge rates is, therefore, achieved by relatively low binding energy between Li and O ions, which leads to fast Li diffusivity.
921 - 926
Full Text