Current time in Korea 06:29 Oct 21 (Sat) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 33, Number 3
BKCSDE 33(3)
March 20, 2012 

 
Title
Dynamics of Resonant Energy Transfer in OH Vibrations of Liquid Water
Author
Mino Yang
Keywords
Water, Master equation, Energy transfer, OH stretching, Förster
Abstract
Energy transfer dynamics of excited vibrational energy of OH stretching bonds in liquid water is theoretically studied. With time-dependent vibrational Hamiltonian obtained from a mixed quantum/classical calculation, we construct a master equation describing the energy transfer dynamics. Survival probability predicted by the master equation is compared with numerically exact one and we found that incoherent picture of energy transfer is reasonably valid for long-time population dynamics. Within the incoherent picture, we assess the validity of independent pair approximation (IPA) often introduced in the theoretical models utilized in the analysis of experimental data. Our results support that the IPA is almost perfectly valid as applied for the vibrational energy transfer in liquid water. However, proper incorporation of radial and orientational correlations between two OH bonds is found to be critical for a theory to be quantitatively valid. Consequently, it is suggested that the Förster model should be generalized by including the effects of the pair correlations in order to be applied for vibrational energy transfer in liquid water.
Page
885 - 892
Full Text
PDF