Current time in Korea 19:26 Oct 21 (Sat) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 34, Number 11
BKCSDE 34(11)
November 20, 2013 

Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods
Soaram Kim, Hyunggil Park, Giwoong Nam, Hyunsik Yoon, Jong Su Kim, Jin Soo Kim, Jeong-Sik Son, Sang-heon Lee, Jae-Young Leem*
Zinc oxide, B-doped, Hydrothermal, Nanorods, Photoluminescence
Boron-doped ZnO (BZO) nanorods were grown on quartz substrates using hydrothermal synthesis, and the temperature-dependence of their photoluminescence (PL) was measured in order to investigate the origins of their PL properties. In the UV range, near-band-edge emission (NBE) was observed from 3.1 to 3.4 eV; this was attributed to various transitions including recombination of free excitons and their longitudinal optical (LO) phonon replicas, and donor-acceptor pair (DAP) recombination, depending on the local lattice configuration and the presence of defects. At a temperature of 12 K, the NBE produces seven peaks at 3.386, 3.368, 3.337, 3.296, 3.258, 3.184, and 3.106 eV. These peaks are, respectively, assigned to free excitons (FX), neutral-donor bound excitons (DoX), and the first LO phonon replicas of DoX, DAP, DAP-1LO, DAP-2LO, and DAP-3LO. The peak position of the FX and DAP were also fitted to Varshni’s empirical formula for the variation in the band gap energy with temperature. The activation energy of FX was about ~70 meV, while that of DAP was about ~38 meV. We also discuss the low temperature PL near 2.251 eV, related to structural defects.
3335 - 3339
Full Text