Current time in Korea 13:01 Oct 23 (Mon) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 17, Number 2
BKCSDE 17(2)
February 20, 1996 

A Statistical Thermodynamic Study on the Conformational Transition of Oligopeptide Multimer
Younggu Kim, Hyungsuk Pak
The conformational transition of oligopeptide multimer,-(HPPHPPP)n-, is studied (H:hydrophobic amino acid, P:hydrophilic amino acid). The helix/coil transitions are detected in the multimer. The transition depends on the number of amino acid in the sequence, the concentration of the oligopeptide, and temperature which affects helix stability constant (ξ) and hydrophobic interaction parameter (wj). In the thermodynamic equilibrium system jA→Aj (where A stands for oligopeptide monomer), Skolnick et al., explained helix/coil transition of dimer by the matrix method using Zimm-Bragg parameters ξ and σ (helix initiation constant). But the matrix method do not fully explain dangling H-bond effects which are important in oligopeptide systems. In this study we propose a general theory of conformational transitions of oligopeptides in which dimer, trimer, or higher multimer coexists. The partition of trimer is derived by using zipper model which account for dangling H-bond effects. The transitions of multimers which have cross-linked S-S bonds or long chains do not occur, because they keep always helical structures. The transitions due to the concentration of the oligopeptides are steeper than those due to the chain length or temperature.
131 - 138
Full Text