Current time in Korea 20:12 Oct 17 (Tue) Year 2017 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 19, Number 11
BKCSDE 19(11)
November 20, 1998 

Sensitivity of Hyperactivated Ras Mutant in Response to Hydrogen Perixide, Menadione and Paraquat
Kyunghee Chae, Kyunghee Lee
We have explored the impact of altering the Ras-cAMP pathway on cell survival upon oxidative exposures. A hyperactivated Ras mutant of Saccharomyces cerevisiae, intrinsically more sensitive to heat shock than the wild type, was investigated with regard to oxidative stress. In this paper we report that the response of iral, ira2-deleted mutant (IR2.53) to an oxidant, such as hydrogen peroxide (H2O2) or menadione is more sensitive than that of the wild type. IR2.53 showed a dramatic decrease in survival rate when challenged with 0.1 mM H2O2 for 30 min. The greater sensitivity of IR2.53 was also noticed with treatment of 0.01 mM menadione. Prior to oxidative stresses by these oxidants, both the wild type and the mutant were preconditioned with a mild heat shock (37 ℃, 30 min), resulting in improved survivals against oxidative stresses. Rescue of IR2.53 from menadione stress by heat pretreatment was more clearly demonstrated than that from H2O2 treatment. On the other hand, no significant difference was observed between the wild type and the IR2.53 mutant in their survival rates upon paraquat treatments. These findings imply that the mechanism by which H2O2 and menadione put forth their oxidative effects may be closely associated with the cAMP-Ras pathway whereas that of paraquat is independent of the Ras pathway. Finally, the level of glutathione (GSH) was measured enzymatically as an indicator of antioxidation and compared with the survival rate. Taken all these together, this study provides an insight into a mechanism of the Ras pathway regulated by several oxidants and suggests that the Ras pathway plays a crucial role in protection of cell damage following oxidative stress.
1202 - 1206
Full Text